AIGC (Artificial Intelligence Generated Content) 是基于人工智能(AI)技术的一种生产方法,该技术通过数据找到规则并自动生成内容​1​。AIGC 的定义包括利用算法、模型和规则创建内容的技术,其范围比深度学习更为广泛​2​。这种技术已经对日常生活、工业制造和学术领域产生了深远的影响​3​。

AIGC 的发展受到了来自不同国家和组织的关注。例如,中国于2023年8月15日正式实施了针对生成性人工智能(AIGC)的首个法规,为该领域提供了法律框架​4​。此外,一些知名的人工智能研究机构和公司,包括 OpenAI、DeepMind 和 Anthropic,也将 AIGC 的开发列为优先任务​1​。

AIGC 主要应用在许多不同的领域,例如文本、图像、视频和3D内容的生成。随着技术的发展,AIGC 不仅能为内容创建提供支持,还能为公共安全带来挑战和机会,例如通过分析大量数据来自动监测和预警潜在的安全威胁。

生成式人工智能——AIGC(Artificial Intelligence Generated Content),是指基于生成对抗网络、大型预训练模型等人工智能的技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容的技术。
AIGC技术的核心思想是利用人工智能算法生成具有一定创意和质量的内容。通过训练模型和大量数据的学习,AIGC可以根据输入的条件或指导,生成与之相关的内容。例如,通过输入关键词、描述或样本,AIGC可以生成与之相匹配的文章、图像、音频等。
麦肯锡的定义:生成式人工智能旨在通过以一种接近人类行为,(与人类)进行交互式协作。 [1]
Gartner的定义:生成式人工智能是一种颠覆性的技术,它可以生成以前依赖于人类的工件,在没有人类经验和思维过程偏见的情况下提供创新的结果。 [2]
BCG的定义:生成式AI是一种突破性的人工智能形式,它使用对抗网络(GANs)的深度学习技术来创建新颖的内容。 [3]
TE智库的定义:生成式人工智能,将彻底改变人机交互的关系,并创造新的产能输出结构。它将在第四维度实现与人的思维同调,类似移动设备以人类外器官形态存在,AIGC将以外脑的形式存在于人类认知中。 [4]
南京大学数据智能与交叉创新实验室:为伴随着网络形态演化和人工智能技术变革产生的一种新的生成式网络信息内容。 [5]
信通院的定义:AIGC既是从内容生产者视角进行分类的一类内容,又是一种内容生产方式,还是用于内容自动化生成的一类技术集合。 [6]

 

1950年,艾伦•图灵(Alan Turing)在其论文《计算机器与智能(Computing Machinery and Intelligence )》13中提出了著名的“图灵测试”,给出了判定机器是否具有“智能”的试验方法,即机器是否能够模仿人类的思维方式来“生成”内容继而与人交互。 [7]
某种程度上来说,人工智能从那时起就被寄予了用于内容创造的期许。经过半个多世纪的发展,随着数据快速积累、算力性能提升和算法效力增强,今天的人工智能不仅能够与人类进行互动,还可以进行写作、编曲、绘画、视频制作等创意工作。 [6]
2018年,人工智能生成的画作在佳士得拍卖行以43.25万美元成交,成为世界上首个出售的人工智能艺术品,引发各界关注。随着人工智能越来越多地被应用于内容创作,人工智能生成内容 (Arificial Intelligence Generated Content,简称AIGC)的概念悄然兴起。 [6]

 

人工智能的发展历史大致可以被划分为5个阶段。(1950~1974)人工智能概念的出现;(1974~1980)神经网络遇冷,研究经费减少;(1980~1987)专家系统流行并商用;(1987~1993)专家系统溃败,研究经费大减;(1993~至今)深度学习理论和工程突破。
使用计算机生成内容的想法自上个世纪五十年代就已经出现,早期的尝试侧重于通过让计算机生成照片和音乐来模仿人类的创造力,生成的内容也无法达到高水平的真实感。结合人工智能的演进改革,AIGC的发展可以大致分为以下三个阶段:
早期萌芽阶段:1950-1990
受限于科技水平,AIGC仅限于小范围实验。1957年,莱杰伦·希勒(Lejaren Hiller)和伦纳德·艾萨克森(Leonard Isaacson)通过将计算机程序中的控制变量改为音符,完成了历史上第一部由计算机创作的音乐作品——弦乐四重奏《依利亚克组曲(Illiac Suite)》。1966年,约瑟夫·韦岑鲍姆(JosephWeizenbaum)和肯尼斯·科尔比(Kenneth Colbv)共同开发了世界上第一个机器人“伊莉莎(Eliza)”,其通过关键字扫描和重组来完成交互式任务。80年代中期,IBM基于隐马尔可夫链模型创造了语音控制打字机“坦戈拉(Tangora)”,能够处理两万个单词。
沉积积累阶段:1990-2010
AIGC从实验性向实用性逐渐转变,深度学习算法、图形处理单元(GPU)、张量处理器(TPU)和训练数据规模等都取得了重大突破,受到算法瓶颈的限制,效果有待提升。2007年,纽约大学人工智能研究员罗斯·古德温(Ross Goodwin)装配的人工智能系统通过对公路旅行中的所见所闻进行记录和感知,撰写出世界上第一部完全由人工智能创作的小说《1 The Road》。2012年,微软公开展示了一个全自动同声传译系统,通过深度神经网络(DNN)可以自动将英文演讲者的内容通过语音识别、语言翻译、语音合成等技术生成中文语音。
快速发展阶段:2010-至今
深度学习模型不断迭代,AIGC取得突破性进展。尤其在2022年,算法获得井喷式发展,底层技术的突破也使得AIGC商业落地成为可能。其中主要集中在AI绘画领域:2014年6月,生成式对抗网络(Generative Adversarial Network,GAN)被提出。2021年2月,OpenAI推出了CLIP(Contrastive Language-Image Pre-Training)多模态预训练模型。2022年,扩散模型Diffusion Model逐渐替代GAN。

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。