"摩尔定律已死"这个说法是指摩尔定律的速度已经无法继续维持。摩尔定律是由英特尔的共同创始人戈登·摩尔在1965年提出的,他预测集成电路上可容纳的晶体管数量,大约每两年会翻一番。这个定律在过去的几十年中基本上得到了验证,推动了计算能力的快速增长。

然而,随着技术的进步,晶体管的大小已经接近物理极限,每两年翻一番的速度已经变得越来越难以实现。这就是人们说"摩尔定律已死"的原因。但这并不意味着计算能力的增长就会停止,人们正在研究新的计算技术和架构,如量子计算、神经网络硬件等,来继续推动计算能力的增长。

摩尔定律是由英特尔公司联合创始人戈登·摩尔在1965年提出的,它预测了每18个月至24个月,集成电路上可容纳的晶体管数量将增加一倍,而芯片的价格将减半。这个定律在过去几十年中一直被视为计算机行业的基石。然而,随着技术的发展,摩尔定律已经失效了。摩尔本人也预见了摩尔定律失效的那一天。早在2015年,摩尔接受采访时就表示:摩尔定律不会永远有效,但如果良好的工程技术得到应用,那么摩尔定律仍然可以坚持5到10年时间.

传统集成技术下的摩尔定律已经不再有效

在1965年Gordon Moore提出摩尔定律到今天的近56年中,摩尔定律的效率已经逐步衰退到接近失效。Alphabet的董事长John Hennessy于2018年在美国国防高级研究计划局电子复兴计划会议(DARPA ERI)上的演讲中展示了一张图片,是过去40年来计算机性能的增长趋势。可以看到,在1978年到1986年,计算机性能的平均每年长率是25%,随后的1986年到2003年的17年中,年平均增长率增加到52%。接下来的10年,计算机性能的年平均增长率开始下降到23%,随后的几年,进一步下降到12%,直到近5年,已经下降到了3.5%。

摩尔定律——晶体管的“瘦身”
为什么晶体管数量能够实现短时间的翻倍呢?摩尔定律为什么能够成立呢?这些问题要从晶体管开始讲起。

晶体管就像两个首尾相连的二极管。两边是同类型半导体,中间是另一种类型的半导体。正常情况下,没有任何电流能通过它,但是当我们给中间的半导体施加电流,只要电流能达到一定阈值,晶体管就被导通,相当于打开了开关,而在阈值以下,晶体管则相当于断路。

这种通过调节电流实现自由开关的功能就是晶体管最重要的功能,它打开了数字电子学与数字储存器的大门。

人类将很多晶体管与其他元件相互组合,构成各种类型的逻辑电路——与、或、非等门电路,这些电路可以组合成各种计算功能。相比于普通电路,这种电路不仅运算速度更快,还可以做得很小,方便集成到各种微型设备中,这就是所谓的集成电路,它正是现代互联网和你身边的电脑、手机的“鼻祖”。

晶体管数量越多,构成的逻辑电路越多,我们能同时运算的数字就越多,从而构成越快的集成电路,这就是大规模乃至超大规模集成电路诞生的原因。

通过以上描述你可以发现,相同芯片架构下,晶体管的数量其实决定了芯片的性能。那如何实现单位面积芯片晶体管数量翻倍呢?答案其实很简单,将每个晶体管面积变为原来的1/2。

早期芯片只有2维排列,将晶体管看成一个长方形,只要它的长和宽都缩小为原来的0.7倍,0.7×0.7=0.49,就可以实现单个晶体管面积缩小为原来的一半了。

晶体管的长和宽变为原来的0.7倍,其栅极长度自然也会变为原来的0.7倍。

什么是栅极?栅极在晶体管中的作用类似于栅栏,它可以拦住电子,也可以让电子通过。它的功能就是通过调节栅极的电流,以实现调节流过晶体管的电流强度的作用。

栅极其实是晶体管功能的核心所在,因此科学家选择将最小栅极长度作为衡量工艺进步的标准,这就是商业宣传中常说的芯片制程。这下你应该知道为什么手机厂商宣传的芯片制程(从14nm、10nm到7nm再到5nm),每次进步都是按照0.7的比例缩小了吧。

当然,由于晶体管的3维堆叠技术的发明、芯片频率的进步和物理极限等原因,现在的芯片已经“卷”不动晶体管数量了,也无法实现摩尔定律的晶体管翻倍定律。所以英特尔才无奈地将摩尔定律改为“性能提升一倍”。所谓芯片制程也变成了一种象征意义,为了遵循摩尔定律所创造的营销方式,不再代表实际芯片的最小栅极长度了。

半导体行业历经半个多世纪,都在按照摩尔定律发展。从第一枚商用芯片的2250个晶体管,到现在一枚小小的CPU包含的数百亿个晶体管,都是万千工程师智慧的凝结。半导体厂商越来越“卷”,晶体管数量越来越多,芯片效能不断提升,价格自然也降低了。现在你能享受到互联网和智能手机等技术的快速变革和创新,都离不开人类对摩尔定律的坚守。

摩尔定律真的要消失了吗?
可惜的是,随着新工艺节点的不断推出,工艺制程也在一步步向着物理极限逼近,导致摩尔定律无法持续。

对于摩尔定律达到极限的原因,可能你听的最多的就是量子隧穿效应。晶体管如果持续缩小,甚至可能到达几个原子的尺寸。在这个尺度下,量子效应会大大增强,这时,不需要给栅极施加电流,某些电子就可以直接从发射极直接流向集电极,这意味着晶体管的功能受到很大削弱,会导致非常严重的后果。

为了能继续减小栅极大小,人类也提出了各种解决手段,例如将栅极材料替换成高介电材料,以防止电子的穿透。或者将栅极做成类似鱼鳍的叉状3D架构,用立体结构取代平面器件来增强栅极的控制能力,以减小量子隧穿对芯片的影响。

但这些方法都只是“缓兵之计”,如果没有材料学上的突破性进展,随着晶体管数量的增加,生产成本会不断增加,晶体管的性能提升也会遇到瓶颈,终有一天摩尔定律会“死去”。

Intel提出RibbonFET,增加“鱼鳍”结构以增加跟栅极的接触面积(图片来源:Intel宣传片)

有预测认为,摩尔定律的极限将在2025年左右到来,但也有乐观的人认为还能持续更久。这几年,随着AI时代的到来,关于摩尔定律已死的讨论越来越多,其实摩尔本人也预见了摩尔定律失效的那一天。

早在2015年,摩尔接受采访时就表示:摩尔定律不会永远有效,但如果良好的工程技术得到应用,那么摩尔定律仍然可以坚持5到10年时间。有趣的是,英特尔并不赞同老领导的观点,他们经常在公开场合表示:摩尔定律Alive and Well(活得很好)。

虽然晶体管数量的增加趋于平缓是不争的事实,但是各大厂商为了能跟上摩尔定律,仍然在不断努力。未来人类可能会通过优化硬件结构和使用更高效的材料来提高晶体管的性能,或者采用新型的计算架构,例如量子计算机和神经元计算机等,来满足不同领域和应用的需求。

在AI迎来“寒武纪大爆发”的当下,我们需要更强大、更快速、更节能的芯片去支持更复杂、更智能、更创新的AI系统。当下爆火的ChatGPT的研发公司CEO曾在社交媒体发文称,新版本的摩尔定律——全球人工智能运算量每隔18个月翻一番,很快就要到来。这可能就是对戈登·摩尔先生最好的致敬。

结语
在这个快速变化的时代,人们对于技术的期望也在不断提高。摩尔定律的提出,让人们对于未来的技术充满了无限的想象和期待。从电子计算机到量子计算机,从传统互联网到区块链技术,计算机技术正以惊人的速度不断演化,不断改变着人类世界和生活。因此,我们需要不断地寻找新的技术和方法来推动计算机技术的进步。

但同时,我们也需要意识到计算机技术发展的复杂性和多样性,不应该过度依赖于摩尔定律的预测和承诺。只有不断地创新和探索,才能够实现计算机技术的跨越式发展和人类社会的繁荣与进步。

 

 

参考文献

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114-117.
CEA-LETI. (2020). Leti's roadmap to overcome limitations of Moore's law. Retrieved from
Denning, P. J. (2013). Great principles of computing. Communications of the ACM, 56(9), 34-42.
吴军.《硅谷之谜》[J].华东科技,2016,No.359(01):79.

 

 

参考资料  额外阅读

再见,摩尔定律!Hello,异构集成!

*https://www.sohu.com/a/464728172_505795

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。